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ALGORITHM—EIGENVALUE ESTIMATION OF HYPERSPECTRAL WISHART 
COVARIANCE MATRICES  

FROM A LIMITED NUMBER OF SAMPLES 
 
 

1. INTRODUCTION 
 

Estimating the eigenvalues of a covariance matrix has many applications (e.g., biometrics 
for physiological characteristics, hyperspectral remote sensing for detecting signals buried in 
noise and clutter, and medical genetics for identifying population structure). It is also 
fundamentally important in techniques such as principal component analysis and linear 
discriminant analysis, both of which are heavily used in chemometrics and in discrimination 
algorithms.  

 
The estimation of all p eigenvalues of a sampled covariance matrix, when the number of 

samples (n) is small but n/p>1, is a challenging problem. In 2012, Ben-David and Davidson 
presented a new method, with which one can improve the eigenvalue estimates of a Wishart 
distributed covariance matrix and an improved covariance matrix from the eigenvalues can be 
obtained.  In this technical note, we present a MATLAB algorithm for computing the 
eigenvalues and an improved covariance matrix that is constructed from the eigenvalues. 
 
  

                                                 
 Ben-David, Avishai; Davidson, Charles E.  Eigenvalue Estimation of Hyperspectral WishartCovariance 
Matrices from Limited Number of Samples. IEEE Trans. Geosci. Remote Sens. 2012, 50(11), pp 4384–
4396 (DOI: 10.1109/TGRS.2012.2191415). 
. 
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2. MATLAB CODE 
 

function [C,opt]=eigenvalue_estimation(Cx,n,varargin); 
% EIGENVALUE_ESTIMATION improves estimation of the eigenvalues of a covariance matrix 
% This MATLAB function is an algorithm designed to improve the eigenvalue estimates of Wishart- 
% distributed covariance matrices and to recompute an improved covariance matrix from the  
% eigenvalues. The function is an implementation of the procedure developed and published by  
% Avishai Ben-David and Charles E. Davidson, "Eigenvalue Estimation of Hyperspectral Wishart  
% Covariance Matrices From Limited Number of Samples", IEEE Trans. Geosci. Remote Sens., Vol. 50, 
% no. 11, pp. 4384- 4396, November 2012.  
% 
% Usage 
% 
%   [C,opt]=eigenvalue_estimation(Cx,n,varargin); 
% 
% Input 
% 
%   Cx       - p-by-p covariance matrix or p-by-1 vector of eigenvalues in 
%              descending order (i.e., as returned by SVD).  If Cx is a p-by-p 
%              covariance matrix it is assumed to be symmetric and positive 
%              semi-definite. 
%   n        - scalar, number of degrees of freedom used in computing the 
%              sample covariance matrix (number of vectors minus 1) 
%   varargin - optional input variables using property/value pair syntax 
%              (i.e., comma-separated list syntax, see VARARGIN for more). 
%              The following properties are supported:  
% 
%              't', scalar value indicating the transition point between large 
%                 and small eigenvalues.  The default value is [] which means 
%                 that either MDL or a successive linear regression method 
%                 will be used to estimate it.  Valid values are in the range 
%                 2:p. 
% 
%              'MDL', logical scalar, specifying whether minimum description 
%                 length should be used for determining the transition point, 
%                 't', between small and large eigevnalues.  Default is true 
%                 so the MDL is used.  False will use the successive linear 
%                 regression method described in the TGRS paper, Eq. (12).  In 
%                 general MDL is a good method for n/p<10. 
% 
%              'g', function handle defining a monotonic transformation of the 
%                 eigenvalues that is applied prior to estimating 't' using 
%                 the successive linear regressions.  The default is the 
%                 anonymous function @(x)x which is the identity transform and 
%                 represents computing the regression in "linear-scale".  Use 
%                 @log for "log-scale".  In the paper estimating 't' using 
%                 linear-scale was better for Telops data; estimating 't' 
%                 using log-scale was better for SEBASS.  The function in 'g' 
%                 will only be used if 'MDL' is set to false. 
% 
%              'm', p-by-1 apparent multiplicity curve.  Default is [] so that 
%                 'm' will be estimated from equations (8-9) from the paper. 
%                 In the paper, the apparent multiplicity is called "p_i". 
% 
% Output 
% 
%   C   - p-by-p corrected covariance matrix or p-by-1 vector of corrected 
%         eigenvalues  
%   opt - (optional) struct containing values of the optional input arguments 
%         used internally inside the function 
% 
% Notes 
% 
%   This function implements the eigenvalue correction and estimation procedure outlined in  
%   Ben-David and Davidson, TGRS 50(11), 4384-4396 (2012), which is designed 
%   to improve the eigenvalue estimates of Wishart-distributed covariance 
%   matrices.  It lacks the simulation and evaluation functionality of the 
%   full code and only implements the correction procedure on a single sampled 
%   covariance matrix (or spectrum of eigenvalues). 
% 
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%   This function accepts either a covariance matrix or a vector of 
%   eigenvalues. In the former case, the output will be a corrected 
%   covariance matrix recreated using an SVD decomposition, where the 
%   corrected eigenvalues take the place of the sample eigenvalues (but sample 
%   eigenvectors are unaltered, for lack of knowledge). In the latter case, 
%   the output will simply be a vector of corrected eigenvalues. 
% 
%   In the TGRS paper, we show through simulation that this procedure is able 
%   to "adjust" the sample eigenvalues so that they are better estimates 
%   (overall) of the eigenvalues of the population covariance matrix while 
%   simultaneously improving the condition number of the covariance matrix. 
%   The resulting (inverse) corrected covariance matrices improved detection 
%   performance of the matched filter compared to using the original (inverse) 
%   sample covariance matrix, and also improved over the Effron-Morris 
%   estimator of the inverse covariance (an example of the empirical-Bayes 
%   class of estimators) which takes the form of diagonal loading.  The 
%   "two-subset" method (which is a technique to remove bias at the expense of 
%   higher variance) showed slightly improved detection results when used in 
%   the matched filter, though it is less good at improving the eigenvalue 
%   estimates. 
% 
%   EXAMPLES 
% 
%      %generate some artificial input data for demo purposes 
%      sx=sort(exp(randn(125,1)).*2,'descend'); %eigenvalues 
%      n=300;                                   %d.o.f. 
% 
%      %a corresponding artificial covariance matrix 
%      U=orth(rand(125)); %eigenvectors 
%      Cx=U*diag(sx)*U.'; %covariance matrix 
% 
%      %use all defaults passing sx as input (output is corrected e.v.) 
%      [s,opt]=eigenvalue_estimation(sx,n); 
% 
%      %use all defaults passing Cx as input (output is corrected cov. matrix) 
%      [C,opt]= eigenvalue_estimation(Cx,n); 
% 
%      %note that C = U*diag(s)*U.';  
% 
%      %instead of MDL use the successive regression method (in linear space) 
%      [s,opt]= eigenvalue_estimation(sx,n,'MDL',false); 
% 
%      %instead of MDL use the successive regression method (in log space) 
%      [s,opt]= eigenvalue_estimation(sx,n,'MDL',false,'g',@log); 
% 
%      %specify a particular value of t to use 
%      [s,opt]= eigenvalue_estimation(sx,n,'t',5); 
% 
% Last Documented Change: 12/10/12, CED (R2010b) 
 
  
if nargin<2 || isempty(n) || isempty(Cx) 
    error('"Cx" and "n" must be passed.'); 
end 
  
%defaults for optional inputs (stored in a structure where the field name and 
%value defines the property/value pairs) 
opt.t=[];     %allow user to specify a particular value of the transition point 
opt.MDL=true; %use MDL for estimating t by default if 't' is empty 
opt.g=@(x)x;  %use linear-scale when 'MDL' is false and 't' is empty 
opt.m=[];     %allow user to specify a particular multiplicity curve 
  
%override defaults with user inputs 
opt=localParseVarargin(opt,varargin); %subfunction 
  
%number of dimensions 
p=length(Cx); 
  
if numel(Cx)==p 
    %Cx is really a vector of eigenvalues, not a covariance matrix 
    covarianceFlag=false; 
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    sx=Cx(:); %column vector 
else 
    %Cx is a covariance matrix 
    covarianceFlag=true; 
     
    %compute eigenvalues 
    [U,S]=svd(Cx); %V=U' 
    sx=diag(S); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%step 1: shifted eigenvalues% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
if isempty(opt.m) || numel(opt.m)~=p 
    %multiplicity curve needs to be estimated 
    opt.m=multiplicity(sx,n); %subfunction 
end 
  
%adjust the eigenvalues 
k=opt.m(:)./n; %column vector 
s=sx.*(1+k)./(1-k).^2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%step 2: energy normalization% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
if isempty(opt.t) 
    %transition location between large and small eigenvaules needs to be 
    %estimated (the "knee" of the scree plot) 
     
    if opt.MDL 
        %default method is to use MDL (which is reasonable for n/p<10 and for 
        %eigenvalue spectra that are not "too peaked") 
        opt.t=local_MDL_knee(sx,n); %subfunction 
    else 
        %use the successive regression method...whether the transition point 
        %is computed in "linear-space" or "log-space" will depend on the 
        %function g.  By default g is linear.  Log-space is achieved by 
        %setting g to be @log.  Any other transformation may be specified 
        %using the function handle syntax, but problems will arise if g is not 
        %monotonic, and so arbitrary g is not recommended... 
        opt.t=find_the_knee(opt.g(sx)); %subfunction 
    end 
end 
  
%by definition t must be within the range of 2 to p (in case user passed in an 
%invalid value) 
opt.t=max(min(opt.t,p),2); 
  
large=1:opt.t-1; %index for large eigenvalues 
small=opt.t:p;   %index for small eigenvalues 
  
actual1=sum(s(small));  %trace of (small) corrected eigenvalues 
target1=sum(sx(small)); %desired trace for small eigenvalues 
  
actual2=sum(s(large));  %trace of (large) corrected eigenvalues 
target2=sum(sx(large)); %desired trace for large eigenvalues 
  
s(small)=s(small).*target1./actual1; 
s(large)=s(large).*target2./actual2; 
  
%re-sort 
s=sort(s,'descend'); 
  
if covarianceFlag 
    %user passed in the sample covariance, pass out the corrected covariance 
    %matrix using the original eigenvectors and the corrected eigenvalues 
    C=U*diag(s)*U'; 
else 
    %user passed in the eigenvalues, just pass out corrected eigenvalues 
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    C=s; 
end 
  
return; 
  
  
function prop=localParseVarargin(prop,v); 
%LOCALPARSEVARARGIN A vastly simplified local version of PARSEVARARGIN that 
%   will cycle through the optional input arguments and the fields of the 
%   property/value pair struct and override the default values in the struct 
%   with user-set values.  If the same property is matched twice, the last one 
%   passed in varargin will be used.  Matching is case-insensitive, but 
%   otherwise must be exact (abbreviations won't match).  Note also that there 
%   are no warnings for failed matches (failed matches are simply ignored). 
  
   %number of elements in v (which is the cell array varargin) 
   numv=length(v); 
    
   if mod(numv,2) 
       %number of elements in varargin should have been even 
       error(['Improper property/value pair syntax ',... 
           '(odd number of elements appearing in varargin)']); 
   end 
    
   %get fields we will test for 
   propNames=fieldnames(prop); 
   N=length(propNames); 
    
   for i=1:2:numv 
       %for each odd input element 
       for j=1:N 
           %check all property names 
           if strcmpi(v{i},propNames{j}) 
               %assign new value if there is a match 
               prop.(propNames{j})=v{i+1}; 
           end 
       end 
   end 
  
  
function m=multiplicity(s,n); 
%MULTIPLICTY Subfunction to estimate of the apparent multiplicity, Eq. (9) 
%   from paper, using theoretical bounds on the value of the sampled 
%   eigenvalue (as a function of n,p and the population eigenvalue).  We don't 
%   know the population eigenvalue, so we use the sampled eigenvalue, instead. 
%   This is similar to how in a GLRT the estimated parameters take the place 
%   of the population parameters in the likelihood ratio (for lack of 
%   knowledge). 
  
    p=numel(s); 
     
    %approximate bounds on the eigenvalues used in Eq. (8) that are derived 
    %from the Marcenko-Pastur law 
    k=p./n;        %band-to-vector ratio 
    rootk=sqrt(k); %for convenience 
     
    lim=s(:)*(1-[rootk -rootk]).^2; %[a b] 
         
    %Eq. (9) 
    for i=p:-1:1 
        m(i,1)=sum(lim(i,2)<=lim(:,2) & lim(i,2)>=lim(:,1)); 
    end 
     
    %limit the multiplicity curve so that it can't decrease once it has 
    %reached a maximum, Eq. (10) 
    [maxm,loc]=max(m); 
     
    if m(end)~=maxm 
        m(loc:end)=maxm; 
    end 
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function t=find_the_knee(s); 
%FIND_THE_KNEE Estimate the transition point between large and small 
%   eigenvalues using the successive regressions from the left and right (see 
%   Eq. (12) from paper).  The terminology is based on the idea of a "scree" 
%   plot, where it is common to try to find the "crook" or "elbow" or "knee" 
%   of the curve. 
  
    p=numel(s); 
    x=(1:p)'; 
     
    %initialize residuals 
    res1(p-2,1)=0; 
    res2=res1; 
     
    for i=2:p-1 
        %compute the "from the left" residual curve  
        [P1,R1]=polyfit(x(1:i),s(1:i),1); 
        res1(i-1)=R1.normr; 
        %res1(i-1,1)=norm(polyval(P1,x)-s); 
         
        %compute the "from the right" residual curve  
        [P2,R2]=polyfit(x(i:p),s(i:p),1); 
        res2(i-1)=R2.normr; 
        %res2(i-1,1)=norm(polyval(P2,x)-s); 
    end 
     
    %the transition point is the location the residual curves intersect 
    [t,t]=min(abs(res1-res2)); 
    t=t+1; 
     
  
function t=local_MDL_knee(s,n); 
%LOCAL_MDL_KNEE Local subfunction based on Avi Ben-David's MDL_KNEE function. 
%   This function just returns the value of the transition in the scree plot 
%   (none of the other outputs returned by the main function are needed). 
  
    p=numel(s); 
     
    MDL(p-1,1)=0; %initialize 
     
    %for efficiency (no need to recompute inside of loop) 
    logn=log(n); 
     
    for k=1:p-1 
        Es=mean(s(k+1:p));    %arithmetic mean 
        Gs=geomean(s(k+1:p)); %geometric mean 
         
        MDL(k)=-(p-k).*n.*log(Gs./Es)+0.5.*k.*(2.*p-k).*logn; 
    end 
     
    [t,t]=min(MDL); 
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3. CONCLUSIONS 
 

We developed a MATLAB software with which to estimate all p eigenvalues of a 
sampled covariance matrix (Wishart distributed) when the number of samples (n) is small but 
n/p>1 (i.e., we did not address pseudo Wishart or singular matrices where n<p). We were mostly 
interested in n/p that is less than a few tens, but our method also works for large n/p: as n/p 
increases, the benefit of our method diminishes, but nevertheless, our method always improves 
over the sampled data. Our method is practical, quick (<0.4s on 3.3GHz workstation) and simple 
for implementation in MATLAB. With the improved eigenvalue solution we can construct an 
improved covariance matrix. We extensively tested our method. The method performed well for 
all cases including when the population eigenvalue spectrum was highly peaked. 
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